Schwarz-1, Henry

From: Sent:

Palmer, Michael J [michael.j.palmer@usago.ksc.nasa.gov] Wednesday, January 15, 2003 9:04 AM Douglas, Tamara A mps-1551

To:

Subject:

MPS-2-28.pdf

SUSPECT BSTRA ASSEMBLY

Element/End Item: OV102

Flow/Usage: FLIGHT 28/STS107

Facility: **OPF**

Design Center Concurrence: JSC

Category:
OPR: MPS
TTL ORG: SE

This document does not contain hazardous operations.

Approval Record

SUSPECT BSTRA ASSEMBLY

Technical Contact	echnical Contact: F. Tomimbang		Phone: 1-3370		
	Category II	TOP Only			
This Approval Record is for all Operation No(s) listed below:					
Initial Released Op	Initial Released Operations:10				
Added Operations:					
Deleted Operations	3:	1000			
Replaced Operation	ns:				
Comments:	ede				
Organization	Name (Printed)	Name (Signature)	Date		
EXXISTER 1		S			

The following signatures are for the Deferral disposition only.

Organization	Name (Printed)	Name (Signature)	Date
OPR-MR			
NASA-SE			
ORB-LSS			
QE			
·			

PMRB Concurrence with the Disposition per rationale on page(s)

Organization	Name (Printed)	Name (Signature)	Date
Shuttle Engineering, KSC			
Process Engineering, KSC,PMRB Chairman			
LSS Engineering			
SSP Element Project Office KSC			
LSS System Integration			
SSP Engineering Integration KSC		·	
S & MA			
Chief, MA Engineering, KSC			
PMRB Chairman Secretary			

Table of Contents:

1.0 INFORMATION	.1
1.3 Operations List	
2.0 SAFETY INFORMATION	
2.4 Reference Safety Documentation	
3.0 STAGING REQUIREMENTS	
4.0 PLANNING REQUIREMENTS	.1
5.0 CONFIGURATION ACCOUNTING AND VERIFICATION	.2

1.0 INFORMATION

1.3 Operations List

Operation		Shop/ Cntl Rm Console	OPR	Haz (Y/N)	Duration (Hrs)
No.	Title				
10	Deferral	AFT/ NA	MPS	N	30

2.0 SAFETY INFORMATION

2.4 Reference Safety Documentation

Number	Rev	Title
KHB 1710.2	LI	KSC Safety Practices Handbook
GSOP 5400	LI	Ground Safety Operating Procedure

3.0 STAGING REQUIREMENTS

4.0 PLANNING REQUIREMENTS

OIR Required Yes [], No [X]

Predecessors:

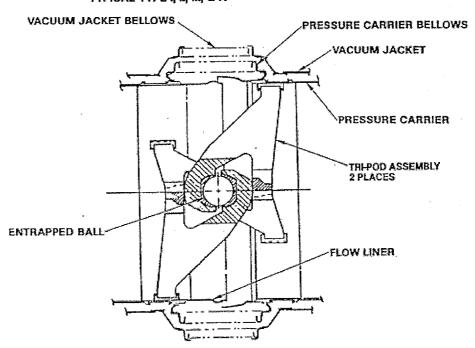
Successors:

Configuration Required:

5.0 CONFIGURATION ACCOUNTING AND VERIFICATION

OPERATION 10 Deferral

Shop: AFT


Cntrl Rm Console: NA

OPR: MPS Zone: 330

Hazard (Y/N): N
Duration (Hrs): 30

COMPONENT: LH2 FEEDLINES (MC271-0073)

BALL STRUT TIE ROD ASSY (BSTRA)—LO2 & LH2 TYPICAL TYPE I, II, III, & IV

Rockwell Aerospace

Figure 10-1 - Typical Ball-Strut-Tie-Rod-Assembly (BSTRA) (For Reference Only)

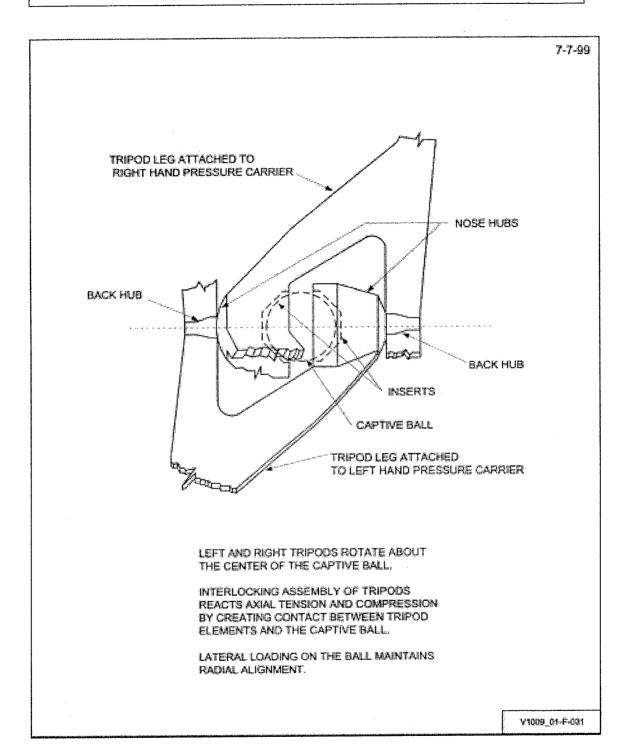


Figure 10-2 - Closeup of Captive Ball and Hubs (For Reference Only)

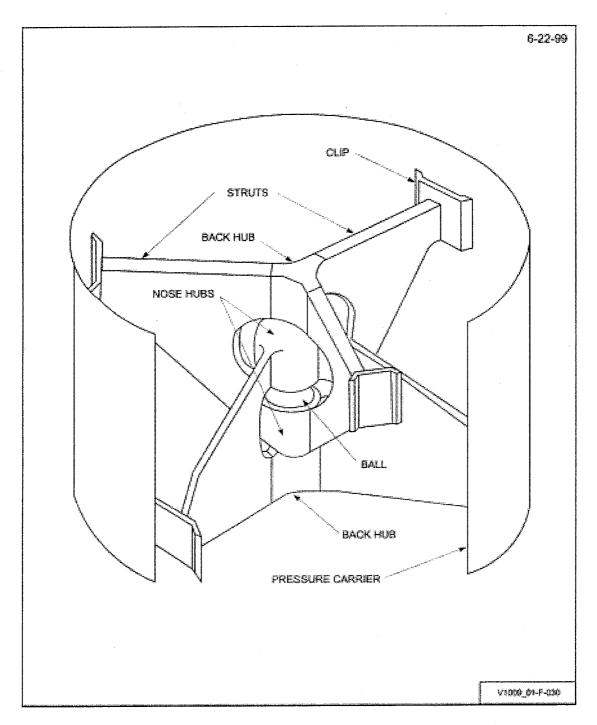


Figure 10-3 - Three Dimensional View; Ball-Strut-Tie-Rod-Assembly (BSTRA) (For Reference Only)

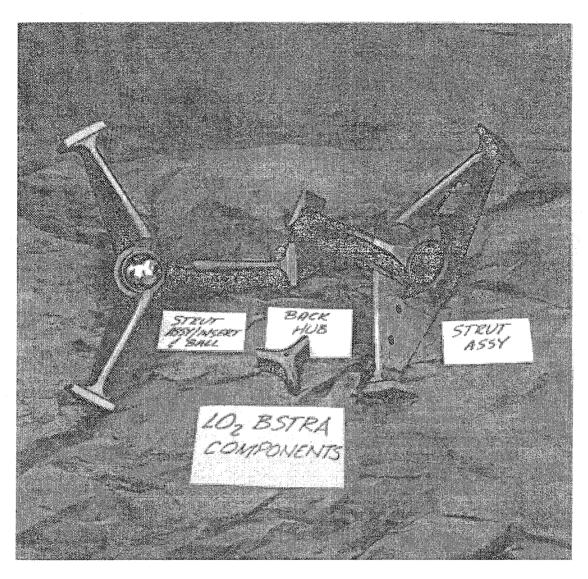


Figure 10-4 - Ball-Strut-Tie-Rod-Assembly (BSTRA) Components (For Reference Only)

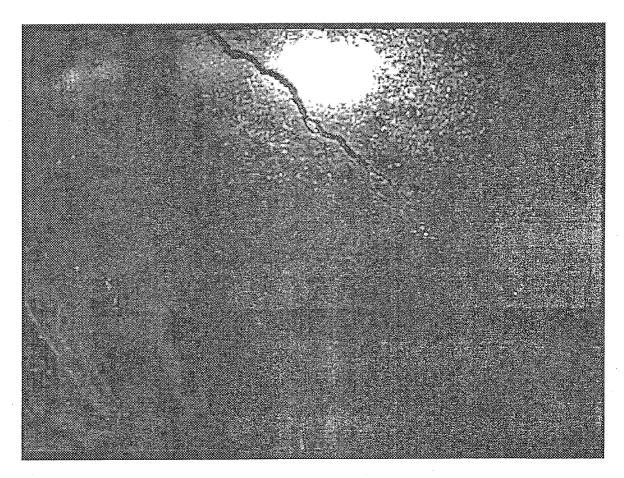


Figure 10-5 - Cracked Ball on OV103 (For Reference Only)

ACTION REQUESTED - RESTRICTED LIFE DEFERRED "USE AS IS"

Ref. Item #1
Recommend Deferral approval, acceptance of disposition for Restricted Life "Use as is"
[X] One Flight, [] Future Flight

Rationale:

During OV103 OMDP borescope inspections of the Ball-Strut-Tie-Rod-Assemblies (BSTRA), a crack was found in the ball LO2 17" feedline aft BSTRA. Consequently, suspect PR's were initiated on all orbiters. Subsequent borescope inspections of all accessible areas of the BSTRA balls in OV103, OV104, and OV105 found no other indications. OV102 could not perform these inspections at the Pad, however, the same video borescope inspections were performed prior to its last flight (STS-109) at Palmdale. No anomalies were noted during the inspection and a review of the videotape reveals no apparent indications.

The BSTRA is an internal support mechanism for the bellows assemblies of the LO_2 and LH_2 17 inch and 12 inch feedlines. Each 17 inch feedline has three BSTRA assemblies, each 12 inch feedline has two. Reference figures 10-1 through 10-5 for hardware description.

Upon discovery of the crack, testing to better understand the material properties of the BSTRA balls was accomplished. Tests included subjecting BSTRA balls to cryogenic conditions in conjunction with load forces. The environments that the test specimens were subjected to were extreme when compared to the flight environment the balls typically are exposed to (i.e.: bare balls thermally shocked at cryogenic temperatures, dynamic portion of each loading cycle represents approximately 4X actual environment, higher thermal gradients). The following conclusions have been drawn from recent testing: cracks arrest, BSTRA ball cracks do not limit functionality, many features (islands, branching, fines, and FOD) were observed, and no FOD greater than 400 micron equivalent size has been produced.

M&P Team has observed metallurgical characteristics in the test specimens and concluded that the indication of the jagged nature of the fracture provides a locking feature to preclude large island liberation. The size of the particulate generated has been evaluated by Rocketdyne and is within operational experience and design limits of the SSME. Particulate of the type and amount seen during testing could readily be ingested by the engine and is not a concern.

The model developed by the Stress Team agrees with test, analysis, and observations and substantiates the conservatism of testing.

Based on Boeing design, USA, Boeing and NASA test and analysis, and the absence of indications from the review of the most recent OMDP borescope inspection, OV102 has been approved for one flight by the Space Shuttle Program Manager. This PR will be deferred to flight 29 of OV102 when further inspections will take place.

This deferral action does not invalidate the basis for certification.

This deferral action does not impact the Critical Items List (CIL) retention rationale or hazard controls.

10-1 QE

Route this PR to PMRB for approval.

QE:______

10-2 OQCV

Transfer this PR to OV-102, Flight 29.

WC:

Post flight disposition summary

Post flight disposition will include a thorough inspection of the BSTRA balls using video borescope. If access permits, a ball manipulation tool in conjunction with the GSE struts to rotate the balls within the BSTRA's will be used.

*** End of Operation 10 ***